Helical Conformation Tunability via Hydrogen Bonding in Supramolecular Frameworks

نویسندگان

چکیده

Open AccessCCS ChemistryRESEARCH ARTICLE15 Jun 2021Helical Conformation Tunability via Hydrogen Bonding in Supramolecular Frameworks Zhijie Xue†, Fuwei Gan†, Hong Liu†, Chengshuo Shen, Huibin Qiu, Bo Yang and Ping Yu Xue† School of Physical Science Technology, ShanghaiTech University, 201210 Shanghai †Z. Xue, F. Gan, H. Liu contributed equally to this work.Google Scholar More articles by author , Gan† Chemistry Chemical Engineering, State Key Laboratory Metal Matrix Composites, Jiao Tong 200240 Liu† Shen Google Qiu *Corresponding authors: E-mail Address: [email protected] https://doi.org/10.31635/ccschem.021.202100784 SectionsSupplemental MaterialAboutAbstractPDF ToolsAdd favoritesTrack Citations ShareFacebookTwitterLinked InEmail Hydrogen-bonded molecules their dynamics are significantly important chemistry biology due widespread functionality. Besides natural abundance diversity, applications with dynamic conformations artificial networks allow information storage molecular motor design on the nanometer scale. Here, we report hydrogen-bonded tunable helical conformation metal surfaces. The two-dimensional hydrogen-bond triggered resolved scanning probe microscopy at single-molecule level. In combination theoretical calculations, surface-specific hydrogen bonds identified as origin conformation. Our results provide a distinctive access architecture driven interaction Download figure PowerPoint Introduction structures essential nature play vital role numerous biological processes.1,2 As inspired nature, self-assemblies surfaces directed noncovalent interactions, for example bonding,3–6 metal–organic coordination,7–9 van der Waals (vdW) forces,10,11 offer great potential fabricate supramolecular architectures tailored functionalities through synthesis desired building blocks. Among them, bonding is one most employed because its directionality, robust energy range, relevance.12–17 Understanding how influences self-assembly key step realize controllable fabrication manipulation functionalized into complex crucial such electronic devices.18–20 With development scanning-probe techniques, high-resolution imaging provides possibility characterize directly,21,22 which delivers an appealing hotbed investigating self-assembly. used specifically designed dynamical blocks fabrication, furnishes model system rich relationships between self-assembly, including emergent framework. study, molecule anthra(1,2-f:5,6-f′)diquinoline ( 2N-S7) synthesized Supporting Information Schemes S1–S2 Figures S1–S9). This aromatic has S-shaped geometric structure (Figure 1a) exhibits nonplanar repulsion terminal central phenyl ring Figure S10 Tables S1–S2). nitrogen substitutes two rings 2N-S7 responsible forming intermolecular bonds.23–25 Moreover, allows three possible configurations 1b). By considering benzene reference, high-high (HH)/low-low (LL) can be defined being located higher lower than ring. contrast, high-low (HL) configuration composed above while other positioned below. taking advantage noncontact atomic force (nc-AFM) submolecular resolution,26–29 each surface directly visualized. 1 | Molecular characterization monomer surface. (a) 2N-S7. (b) Models HH, HL, LL; gradient red color sketches indicates height increment. (c d) STM AFM images Ag(111). (e) Simulated image based DFT optimized geometry (tip-sample distance 7.5 Å). Set point: (c) Vs = 300 mV I 10 pA; (d) Δz 1.2 Å. Scale bars: 5 Experimental Methods All tunneling (STM) experiments were performed 5K commercial Createc LT-STM/qPlus (CreaTec Fischer & Co. GmbH., Erligheim, Germany). qPlus sensor resonance frequency 30.4 KHz oscillation amplitude 50 pm. To prepare CO-functionalized tungsten tip, NaCl was deposited sample. After dosing CO, attach CO from island tip apex island. For constant-height images, tip-sample decreased few hundred pm set point (V mV, 0.1 nA). addition, density functional theory (DFT) calculations using Vienna ab initio simulation package (VASP) code projector augmented wave (PAW) method (see details). Results Discussion monomers first under vacuum onto different (111) noble metals Au Ag low coverage, isolated found Instead illustrated 1b, substrates only exhibit HH configuration. Regarding Ag(111) instance, S shape shown 1c). Its corresponding nc-AFM 1d) demonstrates that ends observed brightest protrusions, dark detected lowest middle part, suggesting favorite handedness result also supported obtained 1e). comparison, investigated S7 Au(111) S11). (2D) network forms upon deposition room temperature. 2a, hexagonal (red) rhombic (yellow) coexist. 2b reveals unit consists six dimer-sides connected threefold-coordinated trimers. comparing 2b–2d, find HL end other. observation strongly contrasts preferred single suggests stabilize specific these trimer calculated geometries 2e), confirming becomes (one other). 2 (b c) hexagon marked dashed box (a). (d e) simulated threefold coordinated vertex. (a b) Å; 7 (b–d) That framework tune block further tip-manipulation experiment,30,31 where separated monomers. 3a–3g, CO-tungsten trimer, then lateral setting bias 6 nA current. Then, step. Upon measurements, determined after manual separation. clearly show once surrounding removed, switched conformation, unambiguously indicating bonding, instead influence adsorption, factor determining networks. 3 Manual separation (a–c) measured (d–f) (g) models process. switching electron some fluctuating features indicated 4a), placed position 4a, green dots) currents recorded disabled feedback. 4b shows temporal evolution displaying distinct current levels dot position, assigned high positions underneath whereas displays stable level stabilized AFM. Thus, switch demonstrated right panel 4b. occupation probabilities revealed histogram 4b, panel), although dominant rate versus time spectra fitting residence distribution S13). voltage- current-dependent rates summarized 4c 4d. voltage dependence, slope changes obviously function voltage. approaches nearly zero approximately meV, barrier conformations, good agreement binding difference Table S4). power law experimental data R∼IN gives N 0.79 ± 0.04, close 1, major contribution one-electron processes. adsorption site analysis mainly hydrogen-bonding interactions substrate S12).32,33 4 behavior. fivefold vertex f) Left panel: time-resolved dots e); V 150 pA. Middle histogram; schematics long-lived (f). (c, d, g, h) dependence depends coordination number molecule, tunes dynamics. 4e shows, shared nearby trimers, become frustrated both trimers prefer will require adopt LL However, completely unfavorable thus forcing interchange terminals. Indeed, 4f time. Both levels. highest should correspond mirror-symmetric swapped points 4f, panel). intermediate may tip-induced structural change34 studied future. We current- voltage-dependent (Figures 4g 4h). A linear 0.83 observed, tuning strength bond, transformed According previous pioneering studies surfaces,35,36 bond influenced underlying substrate. Similar Ag(111), honeycomb Au(111), 5a. closer look 5b–5d Au(111). 5e) agrees well image, supporting pointing upward. form chain-like Cu(111) S15). Hydrogen-bond networks, six-member ring, 1.8 2.6 mechanism tuned according calculations. constructed vertices per 6a. detailed S3 S14. our analyzed aspects: (1) geometrical distortion induced bonds, (2) charge redistribution, (3) length. quantitatively estimate distortion, introduce Δhc change atom (N) second nearest (H2) formation 6b). values listed table 6c, 12.1 smaller configurations. stark 35.3 larger Since value cost switching, much more Theoretical conformation-dependent landscapes. illustrating H2 atoms (Δhm) (Δht), hN hH2 layer atom, respectively. Differential Δρ Au, equation ρ(sur + mol) − ρ(2 mol). Red blue contours represent depletion accumulation. redistribution differential mol), total surface, ρ(sub molecules. represents qualitatively bond.37,38 area (rectangle 6d) On comparable there pronounced contour N–H Finally, reflected lines, 1.7 shorter case 9.5 HL. These suggest very strong so no it. While little bit stronger they almost neither overwhelming. reason why observe Conclusion 2D measurements spatial resolution. unveiled. study applied route switches network. future, it interest employ architecture, whose various bits, stored inputted extracted controlling detecting available includes details molecules, X-ray crystallographic 2N-S7, surfaces, details, rates, Conflict Interest There conflicts declare. Acknowledgments P.Y. gratefully acknowledges financial support Technology Commission Municipality (no. 20ZR1436900) start-up funding. References 1. He Y.; Ye T.; Su M.; Zhang C.; Ribbe A. E.; Jiang W.; Mao C.Hierarchical Self-Assembly DNA Symmetric Polyhedra.Nature2008, 452, 198–201. 2. Rappas Schumacher J.; Beuron F.; Niwa H.; Bordes P.; Wigneshweraraj S.; Keetch C. A.; Robinson V.; Buck X.Structural Insights Activity Enhancer-Binding Proteins.Science2005, 307, 1972–1975. 3. Pawin G.; Wong K. L.; Kwon K.-Y.; Bartels L.A Homomolecular Porous Network Cu Surface.Science2006, 313, 961–962. 4. Karan Wang Robles R.; Lorente N.; Berndt R.Surface-Supported Pentamers.J. Am. Chem. Soc.2013, 135, 14004–14007. 5. X.; Chen Yan H.-J.; D.; Fan Q.-H.; Wan L.-J.; Ghosh K.; H.-B.; Stang P. J.Engineering Linear Nanostructures Hydrogen-Bond-Mediated Modular Flexible Host-Guest Assembly.ACS Nano2010, 4, 5685–5692. 6. MacLeod J. Lipton-Duffin Fu Taerum Perepichka D. Rosei F.A Substitutional Solid Solution Building Blocks.ACS Nano2017, 11, 8901–8909. 7. Lin Shang X. Adisoejoso N.Steering On-Surface Polymerization Metal-Directed Template.J. 3576–3582. 8. Shi Z.; N.Porphyrin-Based Two-Dimensional Coordination Kagome Lattice Self-Assembled Surface.J. Soc.2009, 131, 5376–5377. 9. Kumar Banerjee Foster Liljeroth P.Two-Dimensional Band Structure Honeycomb Metal–Organic Frameworks.Nano Lett.2018, 18, 5596–5602. 10. Zeng Q.; Xu B.; Yin Bai C.Alkane-Assisted Adsorption Assembly Phthalocyanines Porphyrins.J. Soc.2000, 122, 5550–5556. 11. Theobald Oxtoby N. Phillips M. Champness Beton H.Controlling Deposition Layer Surface Assemblies.Nature2003, 424, 1029–1031. 12. X.-B.; C.-X.; Wu X.-K.; Ma X.-J.; Niu Guo Y.-Y.; Li D.-H.; Y.-L.; C.Beta Motifs Islet Amyloid Polypeptides Identified Surface-Mediated Assemblies.Proc. Natl. Acad. Sci. U. S. A.2011, 108, 19605–19610. 13. Kühnle Linderoth T. Hammer Besenbacher F.Chiral Recognition Dimerization Adsorbed Cysteine Observed Scanning Tunnelling Microscopy.Nature2002, 415, 891–893. 14. Xiao Zhou Sun X.-Q.; Huang L.Supramolecular Polymers Fabricated Orthogonal Based Multiple Macrocyclic Interactions.Chin. Lett.2020, 31, 1–9. 15. Ji Xia Jie Z. F.Supramolecular Construction Multifluorescent Gels: Interfacial Discrete Fluorescent Gels Bonding.Adv. Mater.2015, 27, 8062–8066. 16. Cook J.Dendronized Organoplatinum (II) Metallacyclic Constructed Hierarchical Coordination-Driven Hydrogen-Bonding Interfaces.J. 16813–16816. 17. Pollock J.Supramolecular Tunable Topologies Interfaces.Proc. A.2013, 110, 15585–15590. 18. Deng Zhao Shan B.Hidden Order Haldane-like Phase Chains Assembled Conformation-Switchable Molecules.ACS Nano2018, 12, 6515–6522. 19. Raehm Sauvage J.-P.Molecular Machines Motors; Springer: Berlin, 2001; pp 55–78. 20. Fromm Sander Gebhardt Schaub Görling Kivala Maier S.On-Surface Hydrogen- Halogen-Bonded Graphyne-Like Networks.Angew. Chem.2020, 132, 9636–9642. 21. Urgel I.; Di Giovannantonio Segawa Ruffieux Scott L. Pignedoli Itami Fasel R.Negatively Curved Warped Nanographene Surfaces.J. Soc.2019, 141, 13158–13164. 22. Duan Zha Pan Transitions Driven Nonbonded Adatoms.ACS Nano2020, 14, 6331–6338. 23. Schlickum U.; Decker Klappenberger Zoppellaro Klyatskaya Auwärter Neppl Kern Brune Ruben Barth V.Chiral Kagomé Simple Ditopic Bricks.J. Soc.2008, 130, 11778–11782. 24. Kuhne Krenner Silanes Arnau Garcia de Abajo V.Dichotomous Array Chiral Quantum Corrals Nanoporous Network.Nano Lett.2009, 9, 3509–3514. 25. Stöhr Wahl Galka Riehm Jung Gade Two Dimensions: Concentration Dependence Thermally Induced Aggregation Molecules Surface.Angew. Int. Ed.2005, 44, 7394–7398. 26. Gross Mohn Moll Meyer G.The Molecule Resolved Atomic Force Microscopy.Science2009, 325, 1110–1114. 27. Oteyza Gorman Y.-C.; Wickenburg Riss Mowbray Etkin Pedramrazi Tsai H.-Z.; Rubio Crommie R.Direct Imaging Covalent Bond Single-Molecule Reactions.Science2013, 340, 1434–1437. 28. Pavliček Schuler Collazos Pérez Guitián Peña L.On-Surface Generation Arynes Microscopy.Nat. Chem.2015, 7, 623–628. 29. Stetsovych O.; Švec Vacek Chocholoušová Jančařík Rybáček Kosmider Stará I. Jelínek Starý I.From Helical Planar Chirality Chemistry.Nat. Chem.2017, 213. 30. Stroscio Eigler D.Atomic Manipulation Tunneling Microscope.Science1991, 254, 1319–1326. 31. Rieder K.-H.Basic Steps Lateral Single Atoms Diatomic Clusters Microscope Tip.Phys. Rev. Lett.1997, 79, 697. 32. Stipe Rezaei Ho W.Inducing Viewing Rotational Motion Molecule.Science1998, 279, 1907–1909. 33. Seufert Bischoff Ecija Vijayaraghavan Joshi Samudrala V.A Surface-Anchored Four-Level Conductance Switch Proton Transfer.Nat. Nanotechnol.2012, 41–46. 34. Okabayashi Peronio Paulsson Arai Giessibl F.Vibrations External Field.Proc. A.2018, 115, 4571–4576. 35. Eftekhari-Bafrooei Borguet E.Effect Hydrogen-Bond Strength Vibrational Relaxation Water.J. Soc.2010, 3756–3761. 36. Otero Parga Gallego M.Electronic, Structural Effects Charge-Transfer Organic/Inorganic Interfaces.Surf. Rep.2017, 72, 105–145. 37. Yuan Cheng X.Real-Space Identification Intermolecular Microscopy.Science2013, 342, 611–614. 38. Mönig Amirjalayer Timmer Hu Díaz Arado Cnudde Strassert Rohlfing Fuchs H.Quantitative Assessment Interactions Microscopy Using Copper Oxide Tips.Nat. Nanotechnol.2018, 13, 371–375. Previous articleNext article FiguresReferencesRelatedDetails Issue AssignmentNot Yet AssignedSupporting Copyright Permissions© 2021 Chinese SocietyKeywordsDFT calculationdynamic conformationscanning microscopemolecular frameworkshydrogen bondAcknowledgmentsThe Downloaded 686 times Loading ...

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical formation of helical supramolecular polymers via stacking of hydrogen-bonded pairs in water.

Bifunctional ureido-s-triazines provided with penta(ethylene oxide) side chains are able to self assemble in water, leading to helical columns via cooperative stacking of the hydrogen-bonded pairs (DADA array). Monofunctional ureido-s-triazines do not form such helical architectures. The presence of a linker, covalently connecting the two ureido-s-triazine units, is essential as it generates a ...

متن کامل

Hydrogen Bonding Modules for Use in Supramolecular Polymers

Nature utilizes a wide range of noncovalent interactions to maintain the well-defined, three-dimensional structure of key biomacromolecules, such as proteins, DNA, and RNA. Because their discrete structures are the key to their biomacromolecular function, noncovalent interactions truly underpin all biological complexity and function and, thus, life itself. Supramolecular polymer chemistry takes...

متن کامل

Supramolecular polymers with tunable topologies via hierarchical coordination-driven self-assembly and hydrogen bonding interfaces.

A powerful strategy to obtain complex supramolecular materials is the bottom-up construction of noncovalently bound materials by hierarchical self-assembly. This assembly process involves stepwise, uniform increases to the architectural complexity of a substrate, starting from discrete precursors and growing in dimensionality through controlled reactivity to a final product. Herein, two orthogo...

متن کامل

Supramolecular PhanePhos-analogous ligands through hydrogen-bonding for asymmetric hydrogenation.

PhanePhos-analogous phosphorous ligands have been generated via self-assembly through hydrogen-bonding, and studied in rhodium-catalyzed asymmetric hydrogenation (up to 99% ee).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: CCS Chemistry

سال: 2022

ISSN: ['2096-5745']

DOI: https://doi.org/10.31635/ccschem.021.202100784